

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

GRÅ CEMENT 42,5

AALBORG PORTLAND A/S, CEMENTIR HOLDING

Programme: The International EPD® System, www.environdec.com Programme operator: EPD International AB EPD registration number: S-P-08673 Publication date 2023-03-15

Valid until: 2028-03-13

Geographical scope:

Denmark

An EPD should provide current information and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at www.environdec.com.

GENERAL INFORMATION

MANUFACTURER INFORMATION

Manufacturer	Aalborg Portland A/S, Cementir Holding
Address	Aalborg Portland A/S, Rørdalsvej 44, 9220 Aalborg, Denmark
Contact details	cement@aalborgportland.dk
Website	www.aalborgportland.dk

PRODUCT IDENTIFICATION

Product name	GRÅ CEMENT 42,5
Additional label(s)	CEM II/A-LL 42,5 R
Product number / reference	0615-CPR-9806.1
Place(s) of production	Aalborg, Denmark
CPC code	3744

The International EPD System

EPDs within the same product category but from different programmes may not be comparable.

EPD INFORMATION

The EPD owner has the sole ownership, liability, and responsibility for the EPD. Construction products EPDs may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context

EPD program operator	The International EPD System
EPD standards	This EPD is in accordance with EN 15804+A2 and ISO 14025 standards.
Product category rules	The CEN standard EN 15804 serves as the core PCR. In addition, the Int'l EPD System PCR 2019:14 Construction products, version 1.11 (05.02.2021) is used. c-PCR 001 Cement & building lime
EPD author	Stefan Emil Danielsson, Research and Quality Center, Cementir Holding S.p.A Aalborg, Denmark
EPD verification	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☑ External verification
Verification date	2023-03-13
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD number	S-P-08673
ECO Platform nr.	-
Publishing date	2023-03-15
EPD valid until	2028-03-13

PRODUCT INFORMATION

PRODUCT DESCRIPTION

The GRÅ CEMENT 42,5 is a CEM II/A-LL 42,5 R reaching a 28-day strength of above 42,5 MPa.

PRODUCT APPLICATION

Products are intended for preparation of concrete, mortar, grout and other mixes for construction and for the manufacture of construction products.

TECHNICAL SPECIFICATIONS AND PHYSICAL PROPERTIES OF THE PRODUCT

Product sheet for the cement can be retrieved here: https://www.aalborgportland.dk/downloads/ydeevnedeklarationer/

Further information can be found at www.aalborgportland.dk

PRODUCT STANDARDS

The GRÅ CEMENT 42,5 is manufactured according to the requirements in the European standard <u>DS/EN 197-1</u>.

PRODUCT RAW MATERIAL COMPOSITION

Product and Packaging Material	Weight, kg	Post- consumer %	Renewable %	Country Region of origin
Clinker	800 - 940	0	0	Denmark,
				Europe
Limestone	60 - 200	0	0	Denmark
Other constituents	0 - 50	0	0	Denmark

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	<0,1	Europe, World
Minerals	97	Denmark
Fossil materials	3	Denmark, Europe
Bio-based materials	0	-

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0,1% (1000 ppm).

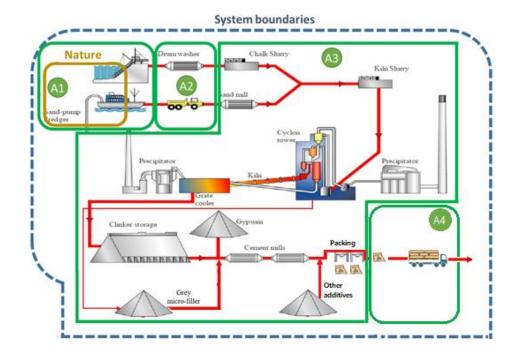
PRODUCT LIFE-CYCLE

MANUFACTURING AND PACKAGING (A1-A3)

Portland cement is made by heating, in a cement kiln, a mixture of raw materials (mainly limestone or chalk) to a calcining temperature of above 600°C and then a fusion temperature, which is about 1450°C to sinter the materials into grey clinker. The production process is a so-called wet process due to the wet limestone used. To achieve the desired setting qualities in the finished product, a quantity of gypsum or anhydrite is added to the clinker and the mixture is finely ground. Finally, the cement is packed in laminated 25 kg paper bags. This process is considered negligible for the overall environmental impact.

TRANSPORT AND INSTALLATION (A4-A5)

Only distribution to end customers is considered (A4). Transportation happens in Denmark, partly by truck regionally, and partly by ship from silo to silo from where it is distributed by truck to local customers. The last mile truck distribution is not included. The transport impact is partitioned according to flow volume and distances and displayed in the table at the "Scenario documentation" of this EPD.


PRODUCT USE AND MAINTENANCE (B1-B7)

As cement is an intermediate product, no other lifecycle phases are relevant to cover. Air, soil and water impacts during the use phase have not been studied. As such they are marked as "Modules Not Relevant".

PRODUCT END OF LIFE (C1-C4, D)

The end-of-life modules (C1-C4, and D) are omitted as the material fulfils the exemption criteria based on EN 15804+A2.

MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

LIFE-CYCLE ASSESSMENT INFORMATION

Period for data	2020
Declared unit	1000 kg GRÅ CEMENT 42,5
Mass per declared unit	1000 kg

BIOGENIC CARBON CONTENT

The product does not have biogenic carbon content, only the packaging which is foiled paper bag. The packaging is excluded from the LCA scope.

SYSTEM BOUNDARY

This EPD covers cradle-to-gate with options scope with following modules; A1 (Raw material supply), A2 (Transport) and A3 (Manufacturing). As cement is an intermediate product, no other lifecycle phases are relevant to cover. Only A4 is also included as per the recommendation in EN 15804+A2.

Modules not declared = MND. Modules not relevant = MNR.

	rodu			embly			ι	Jse stag	е			E	nd of li	fe stage	е	Beyond the system						
	stage	!	st	age												boundaries						
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D	D	D				
х	х	х	х	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND				
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling				

CUT-OFF CRITERIA

All major raw materials and essential energy flows are included. The 1% cut-off rule does not apply for hazardous materials and substances: as such, all flows with environmental significance are included. All solid waste emissions, including those that weight less than 1% of the sum of the masses of the inputs, are reported in the end-results.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. In this study, as per EN 15804, allocation is conducted in the following order;

- 1. Allocation should be avoided.
- 2. Allocation should be based on physical properties (e.g. mass, volume) when the difference in revenue is small.
- 3. Allocation should be based on economic values.

Allocation is made in accordance with the provisions of EN 15804+A2 and the PCR. According to the "polluter pays principle" burdens from alternative fuels are excluded. However, the burden from its incineration is voluntarily added to the GWP category in A3 to be directly comparable with most other EPD's.

The data quality is generally high as most are retrieved directly from the Manufacturer and are well below the cut-off criteria. Additional background processes such as transportation and electricity consumption have been modelled using Ecoinvent v.3.6 LCI database, all with less than 2 years old data.

AVERAGES AND VARIABILITY

Essentially, for this EPD, minor inputs such as electricity, internal transport, and waste have been averaged over the entire cement and clinker production of Aalborg Portland.

The International EPD System additional data requirements

Data specificity and GWP-GHG variability for GWP-GHG for A1-A3.

Supply-chain specific data for GWP-GHG	95 %
Variation in GWP-GHG between products	n/a
Variation in GWP-GHG between sites	n/a

ENVIRONMENTAL IMPACT DATA

NOTE: ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930 ARE PRESENTED IN ANNEX.

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Climate change – total	kg CO _{2-eq}	1,05E+01	1,43E+01	6,76E+02	7,01E+02	4,38E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – fossil	kg CO _{2-eq}	1,05E+01	1,43E+01	6,13E+02	6,37E+02	4,42E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – biogenic	kg CO _{2-eq}	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Climate change – LULUC	kg CO _{2-eq}	1,19E-02	7,66E-03	5,52E-02	7,48E-02	1,57E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Ozone depletion	kg CFC11 _{-eq}	2,42E-06	2,97E-06	6,16E-06	1,16E-05	1,00E-05	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Acidification	mol H ⁺ -eq	9,42E-02	1,80E-01	1,61E+00	1,89E+00	1,80E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, aquatic freshwater	kg PO _{4-eq}	1,21E-03	1,32E-04	9,15E-03	1,05E-02	3,70E-04	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, aquatic marine	kg N _{-eq}	1,96E-02	4,80E-02	2,09E-01	2,76E-01	5,36E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Eutrophication, terrestrial	mol N _{-eq}	2,59E-01	5,33E-01	2,39E+00	3,18E+00	5,92E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Photochemical ozone formation	kg NMVOC _{-eq}	5,93E-02	1,46E-01	8,49E-01	1,05E+00	1,81E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion, minerals & metals	kg Sb _{-eq}	1,20E-03	2,56E-04	2,24E-04	1,68E-03	1,19E-03	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Abiotic depletion of fossil resources	MJ	2,20E+02	2,00E+02	1,86E+03	2,29E+03	6,66E+02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Water use	m³ _{-eq} depr.	1,31E+01	7,74E-01	8,61E+00	2,24E+01	2,14E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

EN 15804+A2 disclaimer for Abiotic depletion and Water use indicators and all optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator.

The Climate change parameter (A1-A3) for the cement content includes 67,2 kg CO_{2-eq.} from the combustion of fossil part of alternative fuels during clinker production. In accordance with the "polluter pays" principle / EN 15804 /, the emissions will be added to the production system that caused the waste. In this EPD, the fossil CO₂ contribution from alternative fuels has not been deducted. This makes it easier to compare calculated climate change potential of the cement regardless of the status of the waste in different countries. The net total Climate change potential (without alternative fuel contribution) is 634 kg CO_{2-eq} per ton cement.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Particulate matter	Incidence	1,01E-06	8,98E-07	1,82E-05	2,01E-05	3,21E-07	MND	MND	MND	MND	MND								
Ionizing radiation, human health	kBq U235 _{-eq}	6,75E-01	8,62E-01	3,19E+00	4,72E+00	3,30E-01	MND	MND	MND	MND	MND								
Eco-toxicity (freshwater)	CTU-eq	1,60E+03	1,59E+02	5,55E+03	7,32E+03	5,69E+01	MND	MND	MND	MND	MND								
Human toxicity, cancer effects	CTUh	1,02E-08	7,44E-09	4,87E-07	5,05E-07	2,07E-09	MND	MND	MND	MND	MND								
Human toxicity, non-cancer effects	CTUh	1,84E-07	1,70E-07	2,01E-06	2,37E-06	6,21E-08	MND	MND	MND	MND	MND								
Land use related impacts/soil quality	-	1,11E+02	1,15E+02	2,30E+02	4,55E+02	5,27E+01	MND	MND	MND	MND	MND								

EN 15804+A2 disclaimer for lonizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Renewable PER used as energy	MJ	7,20E+00	3,13E+00	3,26E+02	3,36E+02	9,87E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Renewable PER used as materials	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of renewable PER	MJ	7,20E+00	3,13E+00	3,26E+02	3,36E+02	9,87E-01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-renew. PER used as energy	MJ	2,20E+02	2,00E+02	1,86E+03	2,29E+03	7,57E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-renew. PER used as materials	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Total use of non-renewable PER	MJ	2,20E+02	2,00E+02	1,86E+03	2,29E+03	7,57E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of secondary materials	kg	4,44E-02	0,00E+00	7,68E-04	4,51E-02	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of renewable secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of non-renew. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Use of net fresh water	m³	1,92E-01	3,50E-02	3,32E-01	5,58E-01	1,21E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

PER abbreviation stands for primary energy resources

END OF LIFE – WASTE

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Hazardous waste	kg	9,13E-01	3,08E-01	1,76E+01	1,89E+01	8,13E-02	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Non-hazardous waste	kg	1,01E+01	1,11E+01	3,81E+02	4,03E+02	4,60E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Radioactive waste	kg	9,11E-04	1,35E-03	2,83E-03	5,10E-03	5,21E-04	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Components for reuse	kg	0,00E+00	0,00E+00	2,05E+01	2,05E+01	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for recycling	kg	9,16E-04	0,00E+00	4,32E+00	4,32E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Materials for energy recovery	kg	0,00E+00	0,00E+00	2,21E+00	2,21E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

ENVIRONMENTAL IMPACTS – GWP-GHG - THE INTERNATIONAL EPD SYSTEM

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
GWP-GHG	kg CO _{2-eq}	1,05E+01	1,43E+01	6,73E+02	6,98E+02	4,42E+01	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND

8) This indicator includes all greenhouse gases excluding biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product as defined by IPCC AR 5 (IPCC 2013) This indicator Is almost equal to the GWP indicator originally defined in EN 15804:2012+A1:2013. The fossil contribution of 67,2 kg CO_{2eq} from alternative fuel in A3 is included.

SCENARIO DOCUMENTATION

Manufacturing energy scenario documentation

Scenario parameter	Value
Electricity data source and quality	Ecoinvent v.3.6 data has
	been applied as the only
	valid dataset
Electricity CO _{2-eq} / kWh	0,32
District heating data source and quality	n/a
District heating CO _{2-e} q / kWh	n/a

Transport scenario documentation

Scenario parameter	Value
Transport, freight, lorry 16-32 tonnes, EURO 5,	0,1668
kg CO _{2-eq} / t-km	
A4 average transport CO _{2-eq} emissions, kg CO _{2-eq} / t-km	0,1668
A4 average transport distance, km	265
Transport capacity utilization, %	36%
Bulk density of transported products, kg/m ³	-
Volume capacity utilization factor for nested package	100
products, %	

End of life scenario documentation

Scenario parameter	Value
Collection process – kg collected separately	n/a
Collection process – kg collected with mixed waste	n/a
Recovery process – kg for re-use	n/a
Recovery process – kg for recycling	n/a
Recovery process – kg for energy recovery	n/a
Disposal (total) – kg for final deposition	n/a
Scenario assumptions e.g. transportation	n/a

BIBLIOGRAPHY

ISO 14025:2010 Environmental labels and declarations – Type III environmental declarations. Principles and procedures.

ISO 14040:2006 Environmental management. Life cycle assessment. Principles and frameworks.

ISO 14044:2006 Environmental management. Life cycle assessment. Requirements and guidelines.

Ecoinvent database v3.6 and One Click LCA database.

EN 15804:2012+A2:2019 Sustainability in construction works — Environmental product declarations — Core rules for the product category of construction products.

IES EPD System PCR 2019:14 Construction products, version 1.11 (05.02.2021) is used. c-PCR 001 Cement & building lime

ABOUT THE MANUFACTURER

Aalborg Portland is the only cement factory in Denmark. The past 130 years it has been producing a wide variety of grey cements in its kiln and premium white cement in its six white cement kilns, where the main clinker raw material, limestone and sand, is sourced locally. Since 2004 it is owned by Cementir Group along with 10 other cement factories globally. The annual cement production is 2,4 million tons and the markets are both domestic, regional and global, and the domestic infrastructure is supported by seven Aalborg Portland owed silos across Denmark. In its Research and Quality Centre cements from all factories across the Group are being tested, and the development of low carbon cements is taking place, the latest one FUTURECEM™ launched in 2020 − a calcined clay cement with a 30% lower CO₂ footprint compared to traditional cements.

EPD AUTHOR AND CONTRIBUTORS

Manufacturer	Aalborg Portland, Cementir Holding
EPD author	Stefan Emil Danielsson, Research and Quality Center, Cementir
	Holding S.p.A Aalborg, Denmark
EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD program operator	The International EPD System
Background data	This EPD is based on Ecoinvent 3.6 (cut-off) and One Click LCA
	databases.
LCA software	The LCA and EPD have been created using One Click LCA Pre-
	Verified EPD Generator for Cementitious Products

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with EN 15804, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The background report (project report) for this EPD

Why does verification transparency matter? Read more online.

VERIFICATION OVERVIEW

Following independent third party has verified this specific EPD:

EPD verification information	Answer
Independent EPD verifier	Silvia Vilčeková, Silcert, s.r.o.
EPD verification started on	2023-03-08
EPD verification completed on	2023-03-13
Supply-chain specific data %	95%
Approver of the EPD verifier	The International EPD System

Author & tool verification	Answer
EPD author	Stefan Emil Danielsson
EPD author training completion	2020-10-09
EPD Generator module	Cement, cement mixes & building lime
Independent software verifier	Ugo Pretato, Studio Fieschi & soci Srl.
Software verification date	2021-05-11

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of

- the data collected and used in the LCA calculations,
- the way the LCA-based calculations have been carried out,
- the presentation of environmental data in the EPD, and
- other additional environmental information, as present

with respect to the procedural and methodological requirements in ISO 14025:2010 and EN 15804:2012+A2:2019.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Ving

Silvia Vilčeková, Silcert, s.r.o.

VERIFICATION AND REGISTRATION (ENVIRONDEC)

ISO standard ISO 21930 and CEN (PCR)	standard EN 15804 serves as the core Product Category Rules
PCR	PCR 2019:14 Construction products, version 1.11
PCR review was conducted by:	The Technical Committee of the International EPD® System. See www.environdec.com/TC for a list of members. Review chair: Claudia A. Peña, University of Concepción, Chile. The review panel may be contacted via the Secretariat www.environdec.com/contact.
Independent third-party verification of the declaration and data, according to ISO 14025:2006:	Independent verification of this EPD and data, according to ISO 14025: ☐ Internal certification ☑ External verification
Third party verifier	Silvia Vilčeková, Silcert, s.r.o.
	Approved by: The International EPD® System Technical Committee, supported by the Secretariat
Procedure for follow-up during EPD validity involves third party verifier	□ yes ☑ no

EPD International AB, Box 210 60, SE-100 31 Stockholm, Sweden, E-mail: info@environdec.com

ANNEX

ENVIRONMENTAL IMPACTS - EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	В4	B5	В6	B7	C1	C2	С3	C4	D
Global warming potential	kg CO _{2-eq}	1,04E+01	1,42E+01	6,66E+02	6,91E+02	4,34E+01	MND												
Depletion of stratospheric ozone	kg CFC-11-	1,94E-06	2,37E-06	5,60E-06	9,90E-06	7,91E-06	MND												
Acidification	kg SO _{2-eq}	6,21E-02	1,30E-01	1,39E+00	1,57E+00	8,77E-02	MND												
Eutrophication	kg PO _{4-eq}	1,91E-02	1,78E-02	2,98E-01	3,35E-01	1,80E-02	MND												
Photochemical ozone formation	kg C ₂ H _{4-eq}	2,60E-03	4,33E-03	7,15E-02	7,84E-02	5,77E-03	MND												
Abiotic depletion of non- fossil res.	kg Sb _{-eq}	1,20E-03	2,56E-04	2,24E-04	1,68E-03	1,18E-03	MND												
Abiotic depletion of fossil resources	MJ	2,20E+02	2,00E+02	1,86E+03	2,29E+03	6,59E+02	MND												

The GWP parameter (A1-A3) for the cement content includes 67,2 kg CO_{2-eq.} from the combustion of fossil part of alternative fuels during clinker production. In accordance with the "polluter pays" principle / EN 15804 /, the emissions will be added to the production system that caused the waste. In this EPD, the fossil CO₂ contribution from alternative fuels has not been deducted. This makes it easier to compare calculated global warming potential of the cement regardless of the status of the waste in different countries. The net total GWP (without alternative fuel contribution) is 624 kg CO_{2-eq} per ton cement.

